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Abstract

The ray effects of the finite volume method (FVM) or discrete ordinates method (DOM) are known to show the non-

physical oscillations usually observed in the solution of radiative heat transfer on a boundary. This wiggling behavior is

caused by the finite discretization of the continuous control angle. This article proposes a combined procedure of the

Monte-Carlo and finite-volume method (CMCFVM) for solving radiative heat transfer in absorbing, emitting, and an-

isotropically scattering medium to eliminate the wiggling behavior. To tackle the ray effect problem, which is especially

pronounced in a medium with an isolated boundary heat source, the CMCFVM is suggested here and successfully

applied to a two-dimensional irregular geometry.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, a study of radiative heat transfer in

an irregular multidimensional geometry has received

increasing attention with a successive development of

more powerful computers. Its practical application re-

sides in a need to accurately predict the thermal

behavior in heat exchanger and combustor. Therefore,

several methods have been developed to solve the radi-

ative transfer equation in the irregular geometry.

Among others, there is the finite volume method (FVM)

for radiation [1,2] which has been successfully applied to

several problems of body-fitted geometries [3]. Since the

spatial domain is divided into a finite number of control
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volumes in the FVM, this method has a computational

compatibility with other control-volume based CFD

approach.

The flux methods such as FVM and discrete ordi-

nates method (DOM) used to show a non-physical

oscillation in a solution on the boundary heat flux,

which results from the ray effect [4,5]. This wiggling

behavior is caused by the finite discretization of the

continuous control angle. A more detail about this

shortcoming in DOM is well described and some reme-

dies are also suggested by Chai et al. [4]. Byun et al. [5]

presented that the ray effect is found to be more con-

spicuous when the heat source is locally isolated in the

rather cold medium. To avoid this problem, many

researchers have attempted to improve an angular

quadrature set as well as a spatial differencing scheme

[4,6]. However, most approaches, so far, could not to-

tally correct the ray effects as far as the angular dis-

cretization is used over the entire domain. Therefore,
ed.
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Nomenclature

I radiation intensity, W/(m2 sr)

Ib blackbody radiation intensity, W/(m2 sr)

n number of energy particles absorbed by

control volume

~ni unit normal vector at the control volume

surface i,
N total number of energy particles emitted

qR radiative heat flux, W/m2

~r position vector

R random number

Q radiative energy

~s unit direction vector

Greek symbols

b0 extinction coefficient, ja þ rs, m
�1

h polar angle

ja absorption coefficient, m�1

r Stefan–Boltzmann constant

rs scattering coefficient, m�1

/ azimuthal angle

U scattering phase function, sr�1

W scattering angle

ew wall emissivity

x single scattering albedo, ¼ rs=b0

X solid angle, sr

DX control angle

Subscript

w wall

Superscripts

m, m0 radiation direction
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another alternative for the conventional methods is in

high demand to accurately predict the radiative heat

transfer.

Ramankutty and Crosbie [7] presented a modified

discrete ordinates method as another alternative by

applying a separate semi-analytical treatment for the

intensities on the boundary and showed the reduction of

the ray effects in a partially heated rectangular geometry.

However, this method is not appropriate for an irregular

complex geometry or for a problem with scattering

medium, since a semi-analytical solution is very difficult

to obtain. Even more difficult is it for the analytical

integration for an anisotropically scattering medium. If

the Monte-Carlo method (MCM) [8,9] is employed to

analyze the radiative heat transfer, an exact solution can

be obtained within a statistical limit while almost elim-

inating the ray effect. But this method is based on the ray

tracing technique so that it needs an enormously large

computational time.

Therefore, Baek et al. [10] suggested a simple

numerical method, i.e., combined Monte-Carlo and fi-

nite volume method (CMCFVM), for analyzing radia-

tive heat transfer in arbitrary configurations. In their

work, the CMCFVM is proposed to deal with the ray

effects in absorbing, emitting, and isotropic scattering

medium which is surrounded by diffusely reflecting

walls. Ray effects can be successfully eliminated with a

good computational efficiency in a two-dimensional

irregular geometry. But the method above has not yet

been applied to an analysis of radiative heat transfer in

an anisotropic scattering medium and validated in a

view of performance.

In this work, the CMCFVM is proposed to deal with

the ray effects in absorbing, emitting, and anisotropi-

cally scattering medium which is surrounded by diffusely
reflecting walls when an isolated heat source is located

on the wall. The paper presents radiative heat flux

solutions in irregular geometry using the CMCFVM, the

Monte-Carlo method, and the FVM. Also the compu-

tational efficiency of the CMCFVM is investigated by

comparing the solutions of three methods.
2. Formulations of the combined Monte-Carlo and finite-

volume method

The radiation intensity for an absorbing, emitting

and scattering gray medium at any position,~r, along a

path,~s is governed by

dI ð~r;~sÞ
ds

¼ �b0I ð~r;~sÞ þ ja Ibð~rÞ

þ rs

4p

Z
X0¼4p

Ið~r;~s0ÞUð~s0 !~sÞdX0 ð1Þ

where ja and rs are the absorption and scattering

coefficients and b0 ¼ ja þ rs is the extinction coefficient.

Uð~s0 !~sÞ is the scattering phase function for a radia-

tion from incoming direction ~s0 to scattered direction

~s. The first term on the RHS in Eq. (1) represents

an attenuation of radiation intensity due to absorp-

tion and out-scattering, while the last two terms account

for an augmentation of intensity due to the gas emis-

sion as well as in-scattering. The boundary condition

for a diffusely emitting and reflecting wall can be de-

noted by

Ið~rw;~sÞ ¼ ewIbð~rwÞ þ
1� ew

p

Z
~s0 �~nw<0

Ið~rw;~s0Þ j~s0 �~nwjdX0

ð2Þ
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Fig. 1. Schematic of a spatial control volume and control angle.
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where ew is the wall emissivity and subscript w denotes

the location of the wall, while ~nw is the unit normal

vector.

To implement CMCFVM, above all, the intensity is

divided into two parts, i.e., Iwall and Imed, following the

work by Modest [11]

Ið~r;~sÞ ¼ Iwallð~r;~sÞ þ Imedð~r;~sÞ ð3Þ

While Iwall originates from the emission from the

enclosure wall, Imed is traced back to the radiative source

term in the medium.

A substitution of Eq. (3) into Eq. (1) results in two

radiative transfer equations for Iwall and Imed. While Iwall

is governed by the following equation,

dIwallð~r;~sÞ
ds

¼ �b0I
wallð~r;~sÞ þ rs

4p

Z
X0¼4p

Iwallð~r;~s0ÞUð~s0 !~sÞdX0

ð4Þ

with following boundary condition,

Iwallð~rw;~sÞ

¼ ewIbð~rwÞ þ
1� ew

p

Z
~s0 �~nw< 0

Iwallð~rw;~s0Þ j~s0 �~nwjdX0

ð5Þ

The governing equation and boundary condition for

Imed can be written as,

dImed ð~r;~sÞ
ds

¼ �b0I
med ð~r;~sÞ þ ja Ibð~rÞ

þ rs

4p

Z
X0¼4p

Imedð~r;~s0ÞUð~s0 !~sÞdX0 ð6Þ

Imedð~rw;~sÞ ¼
1� ew

p

Z
~s0 �~nw<0

Imedð~rw;~s0Þ j~s0 �~nwjdX0 ð7Þ

Since the emission from the wall is taken into account

in Eq. (5), only a reflection term is considered as rep-

resented in Eq. (7).

For the case of modified DOM, Ramankutty and

Crosbie [7] divided the RTE into two equations by a

different way as follows,

dIwall ð~r;~sÞ
ds

¼ �b0I
wall ð~r;~sÞ ð8Þ

dImed ð~r;~sÞ
ds

¼ �b0I
medð~r;~sÞ þ ja Ibð~rÞ

þ rs

4p

Z
X0¼4p

ðIwall þ ImedÞð~r;~s0ÞUð~s0 !~sÞdX0

ð9Þ

Then, an analytic solution of Eq. (8) is obtained and

substituted into Eq. (9). But when there exists a scat-

tering term, the analytical solution is not available so

that Ramankutty and Crosbie [7] deals with the in-
scattering term in Eq. (9) using a semi-analytical treat-

ment and a numerical scheme. But this approach re-

quires a tremendous effort for application to a complex

irregular geometry or a problem with special boundary

condition. Furthermore, a treatment of the anisotropic

scattering term introduces an additionally formidable

complication.

In this study, while the radiative transfer equation for

Iwall, Eq. (4) is solved using the Monte-Carlo method

rather than trying to find the analytic solution, the

radiative transfer equation for Imed, Eq. (6) is solved by

FVM. The reason for selecting the Monte-Carlo method

in solving Eq. (4) is that it can be successfully applied to

obtain the exact solution within statistical limit without

incurring ray effect. Moreover this method can be easily

extended to a multidimensional complex geometry with

anisotropic scattering.

In order to implement FVM, Eq. (6) is integrated

over a control volume, DV , and a control angle, DXm, as

shown in Fig. 1, and thereby, the discretization equation

is obtained [3,5]. For simplicity, in the following the

notation ‘med’ will be dropped in Eqs. (6) and (7).
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Z
DXm

Z
DA

Imð~s �~niÞdAdXm

¼
Z
DXm

Z
DV
ð�b0I

m þ Sm
r ÞdV dXm ð10Þ

Sm
r ¼ jaIb þ

rs

4p

Z
X0¼4p

Im
0
Um0!m dX0 ð11Þ

where superscripts m and m0 mean the radiation direc-

tions.

By assuming that magnitude of intensity is constant,

but its direction varies within control volume and con-

trol angle given, following finite-volume formulation can

be obtainedX
i¼e;w;n;s

Imi DAiDm
ci ¼ ð�b0I

m þ Sm
r ÞPDV DXm ð12Þ

where

Dm
ci ¼

Z
DXm

ð~s �~niÞdXm ð13Þ

DXm ¼
Z mþ

m�
dXm ¼

Z /mþ

/m�

Z hmþ

hm�
sin hdhd/ ð14Þ

DAi and DV represent the surface area and control

volume, respectively, while~ni is the outward unit normal

vector at the control volume face.

Here is adopted a step scheme in which a down-

stream face intensity is set equal to the upstream nodal

value [3]. It is not only simple and convenient, but also

ensures positive intensity without considering complex

geometric and directional information. By using this

scheme, Eq. (12) can be recast into the following general

discretization equation, i.e.

amP I
m
P ¼ amE I

m
E þ amW I

m
W þ amN I

m
N þ amS I

m
S þ bmP ð15Þ

where

amI ¼ maxð�DAiDm
ci; 0Þ ð16Þ

amP ¼
X

i¼e;w;n;s

maxðDAiDm
ci; 0Þ þ b0;PDV DX

m ð17Þ

bmP ¼ ðSm
r ÞPDV DX

m ð18Þ

In Eq. (16), subscript I represents E, W , N , and S
while i does e, w, n, and s as shown in Fig. 1, respec-

tively.

Boundary condition in Eq. (7) can be discretized as

Imw ¼ 1� ew
p

X
Dm0
cw<0

Im
0

w jDm0

cwj ð19Þ

Using the Monte-Carlo Method, the Eq. (4) for the

radiation emitted from the wall is solved by tracing the

trajectories of a certain number of particles. Although

there are many excellent review papers [12,13], the pro-

cedure adopted in the work of Taniguchi et al. [8] is

followed here, i.e. radiant energy absorption distribution
(READ) method. This method computes the exchange

factors involved between elements to determine the

radiative heat transfer. Once these factors are obtained

for a specific problem, a different set of boundary con-

ditions can be imposed without re-computing the ex-

change factors. Usually a very large number of bundles

is chosen to simulate the radiation emitted from each

wall element and then their trajectories are traced to

estimate the heat flux or temperature. Because the en-

ergy particles are emitted diffusely, a uniform random

number is employed, and then the direction of emission

of the particle from the wall is as follows,

/ ¼ 2pR/ ð20Þ

h ¼ cos�1ð1� RhÞ ð21Þ

where h is polar angle and / azimuthal angle.

Once emitted, an energy particle is absorbed, scat-

tered in the gas medium, or collided with a wall. The

penetration distance, along which an energy particle

travels before its extinction, is determined by the relation

of Beer’s law.

s ¼ � lnð1� RsÞ=b0 ð22Þ

Whether the particle is absorbed or scattered in the

gas medium is decided by comparison of a random

number and the scattering albedo. Similarly when the

particle collides with wall, another random number de-

cides whether the particle is absorbed or reflected using

emissivity.

The total radiative energy emitted from wall can be

expressed as follows,

Qout;w ¼ ð1� aÞewrT 4
wDA ð23Þ

where a is the self-absorption ratio which represents the

ratio of the energy absorbed by the element itself to the

total energy emitted from the element. The self-absorp-

tion ratio at an arbitrary element I is denoted by

aI ¼ nI=NI ð24Þ

where the n represents the number of energy absorbed

by the element itself, and N the total number of energy

emitted by the element. And the amount of the energy

emitted from an element I and absorbed by another

element J can be expressed using READ, RIJ [8]

RIJ ¼
nJ

NI � nI
ðI 6¼ JÞ ð25Þ

From the Eq. (25), the total amount of the energy

absorbed by an element J can be obtained as follows

Qin;J ¼
X
I

RIJQout;I ð26Þ

The wall heat flux can be evaluated from the net

radiative energy

qwallw ¼ ðQout;w � Qin;wÞ=Aw ð27Þ
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For the combined Monte-Carlo and FVM method,

the radiative heat flux at the enclosure wall can be ob-

tained by superimposing each flux component which is

calculated from the Monte-Carlo method and FVM,

respectively.

qw ¼ qwallw þ qmed
w

¼ qwallw þ
Z
X¼4p

Imedð~rw;~sÞð~s �~nwÞdX ð28Þ

Four Mie-anisotropic scattering phase functions are

considered in this study; forward-biased, F1 and F2, and

backward-biased, B1 and B2, which are presented by

Parthasarathy et al. [9]. F1 and F2 are strongly forward-

scattering phase functions, while B1 and B2 are weak

back-scattering phase functions. Chu and Churchill [14]

expressed the scattering phase function as a series in

Legendre polynomials as follows,

UðWÞ ¼ 1þ
X1
n¼1

AnPnðcosWÞ ð29Þ

where W is the scattering angle and An is the expansion

coefficient. They are obtained by the procedure as sug-

gested by Clark et al. [15] and presented in Table 1.

When the Eq. (6) is solved using the FVM, the Eq.

(29) can be substituted into the equation. However to

consider anisotropic scattering using the MCM, random

numbers have to be generated and then the direction (hs,
/s) of scattering of the particle can be decided [9]. For

gray medium with scattering phase function, U, that is
independent of azimuthal angle, the scattering angle,

that is identical to polar angle, with respect to the inci-

dent direction can be found from

Rhs ¼
Z hs

0

UðhÞ sin hdh
�Z p

0

UðhÞ sin hdh ð30Þ

The azimuthal angle of scattering is found from

/s ¼ 2pR/s
ð31Þ
Table 1

An, the Mie-scattering phase function expansion coefficients

n F1 F2

0 1.0000000 1.0000000

1 2.5360217 2.0091653

2 3.5654900 1.5633900

3 3.9797626 0.6740690

4 4.0029206 0.2221484

5 3.6640084 0.0472529

6 3.0160117 0.0067132

7 2.2330437 0.0006743

8 1.3025078 0.0000494

9 0.5346286

10 0.2013563

11 0.0547964

12 0.0109929
where Rhs and R/s
are random numbers between zero

and one. hs and /s are the polar and azimuthal angles in

the local coordinates with respect to the incident direc-

tion.
3. Results and discussions

In order to validate the present codes of Monte-Carlo

method and FVM, several preliminary calculations were

performed for a two dimensional rectangular geometry

as well as the quadrilateral containing an absorbing and

emitting medium. The results obtained were found to be

in very good agreement with the exact solutions. The

present FVM have also been successfully applied to

several problems [5,10]. The present Monte-Carlo solu-

tions for isotropic scattering were also validated by

comparison with the other solutions [10]. Here, the

solutions for anisotropic scattering are validated in a

quadrilateral geometry as shown in Fig. 2(a). The

emitting surface is taken as the bottom wall, whereas the

other walls and the medium are assumed to be cold

ðTw ¼ 0Þ. All the walls are black and diffuse. The med-

ium is homogeneous and gray with an extinction coef-

ficient of b0 ¼ 1m�1. Three different scattering albedos,

x ¼ 0:2, 0.5, and 0.8, are considered with a strong for-

ward-scattering phase function of F1. Fig. 3 shows the

radiative heat flux along the top wall normalized by

its emitted power. The number of spatial control vol-

umes used for MCM and FVM is ðNx � NyÞ ¼ ð21� 21Þ.
For FVM, the number of control angles is used as

ðNh � N/Þ ¼ ð12� 16Þ. As shown in the figure, the

present solutions are found to be in very good agreement

with the other solutions.

Since the Monte-Carlo method requires a large

number of energy bundles to produce a sufficiently

accurate solution, the number of energy bundles was

set to 1� 107. The variance of the solution in the
B1 B2

1.00000 1.00000

)0.56524 )1.20000
0.29783 0.50000

0.08571

0.01003

0.00063
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Fig. 2. Schematic of a quadrilateral and curved geometry with a body-fitted coordinate grid system.
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Monte-Carlo simulation could be estimated by carrying

out several runs with different random number genera-

tors. The statistical error for the wall heat flux induced

by the Monte-Carlo method was observed to be within

1 percent.
As shown in Fig. 2(b), the combined Monte-Carlo

and finite volume method (CMCFVM) is now applied to

the curved geometry which is one quarter of a circle with

a rectangle on top. The emitting boundary heat source is

taken as the straight vertical left wall that is maintained

at a constant high temperature of 1000 K. While the left

wall is hot, the other walls and medium are cold (300 K).

All the walls are assumed to be black and diffuse. The

medium is homogeneous and gray with an extinction

coefficient of b0 ¼ 1 m�1. Three different scattering

albedos, x ¼ 0:2, 0.5, and 0.8, are considered with four

forward and backward Mie-scattering phase functions

as in Table 1. The spatial grid used here is ðNx � NyÞ ¼
ð21� 21Þ for CMCFVM and MCM. The numbers of

spatial control volumes and control angles used for

FVM are ðNx�NyÞ¼ ð35�35Þ and ðNh � N/Þ ¼ ð12�
16Þ, respectively.

Fig. 4(a) and (b) represent the wall heat flux distri-

butions along the right wall of the curved geometry in

the absorbing, emitting, and anisotropic scattering

medium for F1 and B1 phase functions. The heat flux is

non-dimensionalized by the blackbody emissive power

of the hot left wall. The results show that the heat flux
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increases with scattering albedo for any given phase

functions, because the medium absorbs smaller amount

of radiative energy as the albedo increases. The forward

phase function F1 results in a higher heat flux along the

right wall than the backward phase function B1 for three

given scattering albedos. In Fig. 4(a) and (b), the solu-

tions by FVM are also compared with those by the

Monte-Carlo method. The ray effects are clearly recog-

nized by a wiggling behavior in FVM solution. The ray

effects are known to be reduced by simply increasing the

number of angular discretization in FVM, but they

cannot be totally eliminated for the problem with

localized heat source. Therefore, the FVM needs to be

corrected to deal with the ray effects. Unlike the results
Table 2

Comparison of CPU time for a variety of scattering albedo (F1 case)

x CPUs

FVM ðNh � N/Þ ¼ ð18� 24Þ CM

0.2 777 380

0.5 781 448

0.8 808 538
by FVM, the solutions by CMCFVM show a good

agreement with those by MCM. The CMCFVM uses the

concept of dividing the intensity into two parts which

are emitted from isolated heat source and medium,

respectively. And then, the wall heat flux is obtained by

adding the heat flux obtained by the Monte-Carlo

method to that by FVM. It shows a remarkable accu-

racy achieved by the CMCFVM, which is almost com-

parable to the Monte-Carlo method with only about

20% of computational time required by the Monte-

Carlo method.

In Table 2, the computational time required for F1

forward scattering on a PC equipped with Intel-2GHz

CPU and Visual Fortran-5 compiler is listed for com-

parison. While the CMCFVM requires a longer com-

putation time than FVM which not only lacks in

accuracy, but also induces the ray effects, the CMCFVM

needs only about 20% of computation time spent by the

Monte-Carlo method in generating accurate solutions

that are almost comparable to those by MCM. It is also

known that the computational time for the finite volume

method usually increases as the scattering albedo in-

creases, since more iteration is required to get a con-

vergent solution while resolving the in-scattering as

well as out-scattering term. Similarly, the MCM and

CMCFVM need more computational time as the scat-

tering albedo becomes larger, since the energy bundles

need to travel longer distance to be totally absorbed due

to scattering.

Fig. 5 shows the effects of scattering phase functions

on the right wall heat fluxes for F1 and F2 forward-

scattering phase functions, isotropic scattering, and B1

and B2 backward-scattering phase functions. The heat

fluxes for the forward phase functions consistently are

shown to be higher than that for isotropic scattering.

However, the effects of the backward-scattering phase

functions are observed to be relatively smaller than the

forward-scattering, based on the case for isotropic

scattering case.

Fig. 6 shows the effect of the size of the isolated heat

source on the heat flux along the right wall using the

Monte-Carlo method, CMCFVM, and FVM. Only an

upper half section of the left wall are considered as heat

source as shown in Fig. 2(c). All the other conditions

such as temperature of the cold medium, extinction

coefficient, scattering albedos, and wall boundary
CFVM ðNh � N/Þ ¼ ð18� 24Þ MCM

0 15,218

5 17,854

6 21,500
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conditions are the same as those for the case in Fig. 4.

As the heating size gets smaller, the ray effects are shown

to increase when FVM is used. While the results by

FVM show a wiggling behavior as well as a significant

inaccuracy, the CMCFVM is still observed to produce a
very accurate result while still keeping a computa-

tional efficiency for both of the forward and backward-

scattering phase functions. As the scattering albedo

decreases, more radiation is absorbed by the medium so

that the wall heat flux gets smaller.
4. Conclusions

In order to examine the ray effects in an absorbing,

emitting, and anisotropic scattering medium with an

isolated boundary heat source, the radiative heat

transfer is analyzed using the combined Monte-Carlo

and finite volume method (CMCFVM). And also to

discuss its accuracy of the solutions and computational

efficiency, the radiative heat fluxes by CMCFVM are

compared with the results by the Monte-Carlo method

(MCM) and the finite volume method (FVM). Since the

CMCFVM makes simultaneously use of the merits of

both the Monte-Carlo method and the finite-volume

method, it can be easily applied to an irregular complex

geometry with a high computational efficiency even

when the problem is accompanied by the anisotropic

scattering effect.
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